登上《自然》封面!上海交大校友首次在毫米尺度验证广义相对论
发布时间:2022-02-17 22:26:11 文章来源:扬子晚报
你知道吗?在地球上,楼层越低,时间过得越慢。这可不是玄学,而是爱因斯坦广义相对论预言的时间膨胀效应:引力越大,时间越慢。今天Nature封

你知道吗?在地球上,楼层越低,时间过得越慢。这可不是玄学,而是爱因斯坦广义相对论预言的时间膨胀效应:引力越大,时间越慢。

在不同高度差上验证时钟变快 | 图源:Nature

今天Nature封面的一篇文章证明了,即使高度差只有一毫米,时间流逝的速度也不一样,这是迄今为止在最小尺度上验证广义相对论的实验。

该研究来自于美国科罗拉多大学JILA实验室的叶军团队。叶军本科毕业于上海交通大学应用物理系。

他率团队开发出世界上最精确的原子钟,得出在一毫米高度差上,时间相差大约一千亿亿分之一,也就是大约3000亿年只相差1秒,与广义相对论预言一致。

这种由于引力不同造成的时间差叫做引力红移,虽然已经得到无数次验证,但是如此高精度的检测还是头一次。

引力改变光频率

广义相对论指出,引力场越强,时间就越慢,从而改变电磁波的频率。

如果一束蓝光射向天空,在引力的作用下,就会向红色端移动,称之为「引力红移」。

虽然爱因斯坦早在1915年就预测了这种现象,但是这种「移动」非常小,直到1976年才有了第一次精确的实验验证。

当时科学家用火箭将原子钟送到1万公里的高空,发现它比海平面时钟快,大约73年快一秒。

在不同高度差上验证时钟变快 | 图源:Nature

虽然这种差距身体无法感知,但却与我们的生活息息相关,因为GPS必须要修正这个极小的时间差才能精确定位。

几乎在12年前的同一天,来自加州大学伯克利分校的团队测量了高度差33厘米的两个原子钟的时间差。

现在叶军团队可以做到测量一个原子云内,原子气体上下两端的时间差,而二者之间高度只相差一毫米!

超精准的光晶格钟

为何叶军团队能做到如此精确?那是因为他们使用了一种更精确的时钟——光晶格钟(optical lattice clock)。

这套系统先用6束激光将10万个锶原子逐步冷却,最后用红外激光将锶原子维持在超冷状态。由于激光的相干性,空间中会有周期出现能量较小的区域,从而将锶原子束缚在一个个煎饼形状的空间里。

光晶格钟原理 | 图源:NIST

这种设计减少了由光和原子散射引起的晶格扭曲,使样品均匀化,并扩展了原子的物质波。原子的能量状态控制得非常好,创下了所谓的量子相干时间37秒的纪录。

而对提高精度至关重要的,是叶军团队开发的新成像方法。这种方法能提供整个样本的频率分布的微观图。

这样,他们就可以比较一个原子团的两个区域,而不是使用两个独立原子钟的传统方法。

将锶原子冷却后,然后再用一束激光来激发它,将它的外层电子激发到更高的轨道上。

由于只有极小范围的激光频率可以激发电子,因此只要调节激光到恰好激发的频率并测量,就可以极其精确地测量时间。

激光激发锶原子测量频率 | 图源:NIST

由于一毫米范围内的红移很小,大约只有0.0000000000000000001(别数了,总共19个0),为了能提高精度,研究团队用大约30分钟的平均数据解决此问题。

经过90小时的数据分析,他们的测量结果是9.8(2.3)×10-20mm-1,在误差范围内,与广义相对论符合得很好。

连接量子力学和广义相对论

本项研究的通讯作者叶军表示,此次突破可以把时钟的精确度提升50倍。这有望提高GPS的精确度。

由于引力红移,必须对GPS的原子钟做时间修正,时间修正越准确,也就意味着定位的精度可以越高。

而这对于物理学更是具有重大意义。

最让人兴奋的是,我们现在可以将量子力学和引力联系在一起了!

叶军表示,精确的原子钟将开启在弯曲时空中探索量子力学的可能,比如分布在弯曲时空中不同位置的粒子,是处于怎样的复杂物理状态。

而且,如果能够将目前的测量效果再提升10倍,研究团队就能看到穿过时空曲率时,原子的整个物质波。也就意味着可以开始探索量子尺度下的引力效应。

加拿大滑铁卢大学理论物理学家Flaminia Giacomini也表示,原子钟是探索这一问题最有希望的系统之一。

叶军表示:也许正是这种微小的频率差打破了量子相干性,才让宏观时间变得经典。

此外,原子钟还可以被应用在显微镜上,来观察量子力学和引力之间的微妙联系。同时也能被应用在天文望远镜上,来更加精确地观测宇宙。

事实上,叶军教授也正在用原子钟寻找神秘的暗物质。

甚至在大地测量学上,原子钟也能帮助研究人员更进一步精确测量地球、改进模型。

标签: 登上自然封面

热点HOT

  • 笔记本电脑哪个牌子好  笔记本电脑怎么选
    笔记本电脑哪个牌子好 笔记本

    笔记本质量十大排名十大笔记本电脑品牌?笔记本电脑哪个牌子好?国内十大笔记本电脑排名:1、苹果apple(成立于1976年,是一家高端电脑、音视

  • 音乐学院招生选拔特点 11大音乐学院招生选拔特点
    音乐学院招生选拔特点 11大音乐

    对所有音乐艺考生来说,全国11大音乐学院(中央音乐学院、中国音乐学院、上海音乐学院、天津音乐学院、浙江音乐学院、西安音乐学院、武汉音

  • 为什么用文本来生成视频的 AI 工具也正变得越来越多
    为什么用文本来生成视频的 AI

    如同最近一年 DALL-E 2、Stable Diffusion 等文本生成图像模型发展一样,用文本来生成视频的 AI 工具也正变得越来越多。继 Meta 的

  • 保持血液中药物的最佳浓度 仍然是现代医学的主要挑战
    保持血液中药物的最佳浓度 仍然

    成功治疗疾病的关键方法之一,是在整个治疗过程中提供并维持体内药物的适当剂量。过少会降低治疗效率、导致耐药性,而过量则会增加副作用。

  • 卡内基梅隆大学成功开发出一款多功能、可更换、持久耐用的触感皮肤
    卡内基梅隆大学成功开发出一款多

    如今,人工智能逐渐与声音、视觉等人类感官融合,使人们之间的交流更便捷。但是,将人工智能与人类的触觉融合仍具有挑战性。为解决此项难题

  • Rubius采取了一系列节约成本的措施 包括裁员 75%
    Rubius采取了一系列节约成本的措

    今年 9 月 14 日,(NASDAQ: RUBY,以下简称为Rubius)宣布进行重组和调整资源,称接下来将重点集中在下一代红细胞偶联平台上。官方通稿

  • 为什么马斯克要重启短视频应用Vine
    为什么马斯克要重启短视频应用Vi

    短视频平台 (有可能)即将回归。从 2012 年到 2017 年,这款备受喜爱的有趣短视频分享软件在聚光灯下昙花一现,在鼎盛时期被关闭了服务

  • 基于阳离子脂质的高效纳米疫苗递送系统 细胞因子产量增加约100倍!
    基于阳离子脂质的高效纳米疫苗递

    近年来,免疫检查点抑制疗法等作为治疗癌症的新方法备受关注。然而,当前的免疫检查点抑制疗法仅对约 20%~30% 的癌症患者有效。部分原因

  • 打造一棵人类百年“科技树” 腾讯新总部将建永久科技馆
    打造一棵人类百年“科技树” 腾

    11月6日,2022腾讯科学WE大会十周年如期举行。"十年前,马化腾在首届WE大会上种下一颗种子,希望助力基础科学普及。WE大会历经十年,展现了

  • iOS 16又出新Bug:Face ID无法正常工作
    iOS 16又出新Bug:Face ID无法

    在数个版本的更迭之后,iOS 16的稳定性已经有了相当明显的提升,但仍有部分用户遇到了新的Bug。近日,有部分iPhone用户反馈称,自己的手机

新闻LOVE